High p_T Single Identified Particles in Various Systems, Various Collision Energies, and Several Scaling Variables

KLAUS DEHMELT FOR THE PHENIX COLLABORATION JULY 01, 2015

Medium Opaqueness to Color

 Hot dense medium formed in relativistic heavy ion collisions → opaque to colored particles

 Measured by quantifying energy loss → gain information of medium properties

Medium Opaqueness to Color

2

 Hot dense medium formed in relativistic heavy ion collisions → opaque to colored particles

X.-N., Wang, PRC **58** (1998)2321

Energy Loss

- Energy loss description → non-trivial

 - Original parton energyDecelerated parton energy

Not easily accessible

- Back-to-back photon-jet pairs: reduced rate $\rightarrow \alpha_{em}$
- Jets alone not affected by α_{em} , but
 - Definition of jets → ambiguity
 - Measurement of jets → challenging
- Use high p_T hadrons as proxies → leading hadron as a measure of jet energy

- Assume: Fragmentation Function (FF) same for p+p and A+A
- Nuclear Modification Factor

$$R_{AB}(p_T) = \frac{(1/N_{AB}^{evt})d^2N_{AB}^h/dp_Tdy}{\langle T_{AB}\rangle \times d^2\sigma_{pp}^h/dp_Tdy}$$

 σ_{pp}^{h} : production x-sec $\langle T_{AB} \rangle = \langle N_{coll} \rangle / \sigma_{pp}^{inel}$: nuclear overlap function $\langle N_{coll} \rangle$: # of binary collisions

- $R_{AA} = 1 \rightarrow \text{no nuclear medium effect}$
- $R_{AA} < 1 \rightarrow suppression$

- High p_T hadron R_{AA}
 - Measured in Au+Au 200GeV
 - Same FF for $R_{AA} \rightarrow \pi^{o}$ and η consistent

PRC82, 011902(R) (2010)

 R_{AA} very similar from
 200 GeV (RHIC)

2.76 *TeV* (LHC)

- Parton energy loss <u>expected</u> to depend on
 - System size
 - Collision energy

- R_{AA} relatively insensitive to variations of energy loss
- p_T^{-n} -shaped spectra $\rightarrow n$ changes fast with collision energy: $n(62\text{GeV}) \approx 11$, $n(200\text{GeV}) \approx 8$, $n(2.76\text{TeV}) \approx 6$
- Instead of R_{AA} measure fractional momentum loss of high p_T hadrons

$$\Delta E/_E \sim \delta p_T/_{p_T} \equiv S_{loss}$$

7

• R_{AA} relatively insensitive to variations of energy loss

Klaus Dehmelt - Hard Probes 2015

July-01-2015

Fractional Momentum Loss

8

- N_{coll} scaling + FF unchanged
- Scale p+p data (σ_{π^0}) with T_{AA} (centrality)
- Fit p+p data
 - shift scaled p+p point closest in yield to A+A
- $p_T^{scaled}(p+p) p_T(A+A)$
- Relate to $p_T^{scaled}(p+p) \to \delta p_T/p_T$

PHENIX

Fractional Momentum Loss @ 2.76 TeV

9

• S_{loss}(p_T) for h[±]: ALICE Pb-Pb 2.76 TeV

Fractional Momentum Loss 0.2 TeV vs. 2.76 TeV

• $S_{loss}(p_T)$ for

π^o:PHENIX Au-Au σ^{so} 0.3
200 GeV

h±: ALICE Pb-Pb 2.76 TeV

at the same centrality selections

Fractional Momentum Loss 0.2 TeV vs. 2.76 TeV

Systematic Studies with Scaling Variables

- Systematic studies of fractional momentum loss by means of *scaling variables*
 - \circ Number of nucleon and quark participants N_{part} and N_{qp}
 - Bjorken Energy density
 - o Charged particle multiplicity $dN_{ch}/d\eta$

Glauber-MC

- o estimates # nucleonparticipants per centrality N_{part}
- o modify Glauber-MC for N_{gp} with quark-quark as fundamental interactions:
 - Nucleons distributed according Woods-Saxon
 - Quarks are distributed around ____ N-center $\rho(r) = \rho_0^N e^{-ar}$, $a = 4.27 fm^{-1}$
 - × Quarks interact if $d < \sqrt{\frac{\sigma_{qq}^{inel}}{\pi}}$
 - \times Vary $\sigma_{aa}^{inel} \rightarrow$ reproduces σ_{NN}^{inel}

$\sqrt{s_{NN}}$ (GeV)	$\sigma_{NN}^{\mathrm{inel}} \; (\mathrm{mb})$	$\sigma_{qq}^{\mathrm{inel}} \; (\mathrm{mb})$
2760	64.0	18.4
200	42.3	9.36
62.4	36.0	7.08

13

• $dE_T/d\eta$ scales better with N_{qp} than N_{part}

13

• $dE_T/d\eta$ scales better with N_{qp} than N_{part}

Bjorken Energy Density

$$\circ \epsilon_{Bj} := \frac{1}{\tau A_{\perp}} \frac{dE_T}{dy}$$

- \times τ : proper time at QGP_{equil} \rightarrow strongly model dependent
- \times A \sim $\sigma_x \sigma_y$: transv. size (from Glauber-MC)

$$\Rightarrow \epsilon_{Bj} \times \tau = \frac{1}{A_{\perp}} \frac{dE_T}{dy}$$
 contains only well-established experimental quantities

- o ALICE-data from J.Phys. G38
- Charged Particle Multiplicity
 - o PHENIX measured $dN_{ch}/d\eta$ at $|\eta|$ <0.35, <u>no</u> magnetic field
 - o ALICE-data from PRL 106, measured with Silicon Pixel Detector at $\eta < 0.5$

Scaling Variable Dependence

15

ullet Fractional momentum loss vs. N_{part} and N_{qp}

$$\delta p_T/p_T$$
 for $p_T^{scaled}(p+p) = 7 \text{ GeV/c}$

N_{part} and N_{qp} according to centralities

Scaling Variable Dependence

16

• Fractional momentum loss vs. $\epsilon_{Bj} \times \tau$ $\delta p_T/p_T$ for $p_T^{scaled}(p+p)=7$ and 12 GeV/c Bjorken Energy density according to centrality

Scaling Variable Dependence

17

• Fractional momentum loss vs. $dN_{ch}/d\eta$

$$\delta p_T/p_T$$
 for $p_T^{scaled}(p+p) = 7$ and 12 GeV/c

Charged particle density corresponding to centrality

Summary and Conclusion

- Fractional momentum loss S_{loss} might be more sensitive tool than R_{AA} to compare different colliding systems \rightarrow removes spectra-shape bias
- We are working to determine the dependence on parameters $\delta p_T/p_T^{pp} = \beta (scaling \ var.)^{\alpha}$
- In p_T region where hard scattering is expected to dominate S_{loss} exhibits simple scaling with global observables
- S_{loss} as a function of $dN_{ch}/d\eta$ or $\varepsilon_{Bj} x \tau$ consistent between highest energy RHIC-results and LHC
 - → good scaling variables

